We obtain the Hurst parameter range giving the necessary and sufficient conditions to solve the stochastic wave equation: $ \frac{\partial^2 }{\partial t^2}u(t,x) =\Delta u(t,x)+\dot{W}(t,x)$ in $L^2(\Omega)$, where $\{ W(t,x),\ t\ge 0, x\in \RR^d\} $ is a fractional Brownian field with temporal Hurst parameter $H_0\in[\tfrac12,1]$ and spatial Hurst parameters $H_i\in(0,1)$ for $i=1,\cdots,d$. We also obtain the sharp growth rate and the sharp H\"older continuity of the solution on the real line when $H_0=1/2$.